无标题文档

热点论文带您领略未来通信在光电材料及信息编码领域的最新进展——图书馆前沿文献专题推荐服务(46)

2021-09-24

 


        在上一期前沿文献推荐中,介绍了未来通信在材料领域研究的最新进展,包括:一种用于千兆数据速率反向散射通信的印刷毫米波调制器和天线阵列、基于自适应阻抗匹配技术的射频前端系统功率传输优化、基于电感调谐改进分裂环谐振器的近零折射率(NZI)超材料四频段epsilon negative(ENG)多频段天线性能增强,以及离子晶体中声子极化激元对THz频率光学非线性的巨大增强。
在本期的文献推荐中,关注点着眼于光电材料及信息编码领域的最新进展,包括:具有超快控制的可重编程等离子体拓扑绝缘体、用于下一代数据通信的新兴发光二极管、通过时域数字编码超表面对谐波振幅和相位进行精确和宽带操作-以达到256QAM毫米波无线通信,以及基于区块链的无线通信:迈向6G的新范式,供相关领域的科研人员参考。

领域一 具有超快控制的可重编程等离子体拓扑绝缘体
Reprogrammable plasmonic topological insulators with ultrafast control
Jian Wei You, etc.
Nature Communications, 2021

Topological photonics has revolutionized our understanding of light propagation, providing a robust way to manipulate light. So far, most of studies in this field are focused on designing a static photonic structure. Developing a dynamic photonic topological platform to switch multiple topological functionalities at ultrafast speed is still a great challenge. Here we theoretically propose and experimentally demonstrate a reprogrammable plasmonic topological insulator, where the topological propagation route can be dynamically changed at nanosecond-level switching time, leading to an experimental demonstration of ultrafast multi-channel optical analog-digital converter. Due to the innovative use of electric switches to implement the programmability of plasmonic topological insulator, each unit cell can be encoded by dynamically controlling its digital plasmonic states while keeping its geometry and material parameters unchanged. Our reprogrammable topological plasmonic platform is fabricated by the printed circuit board technology, making it much more compatible with integrated photoelectric systems. Furthermore, due to its flexible programmability, many photonic topological functionalities can be integrated into this versatile topological platform.
 
领域二 用于下一代数据通信的新兴发光二极管
Emerging light-emitting diodes for next-generation data communications
Aobo Ren, etc.
Nature Electronics, 2021, 4: 559-572

The continuing development of consumer electronics, mobile communications and advanced computing technologies has led to a rapid growth in data traffic, creating challenges for the communications industry. Light-emitting diode (LED)-based communication links are of potential use in both free space and optical interconnect applications, and LEDs based on emerging semiconductor materials, which can offer tunable optoelectronics properties and solution-processable manufacturing, are of particular interest in the development of next-generation data communications. Here we review the development of emerging LED materials—organic semiconductors, colloidal quantum dots and metal halide perovskites—for use in optical communications. We examine efforts to improve the modulation performance and device efficiency of these LEDs, and consider potential applications in on-chip interconnects and light fidelity (Li-Fi). We also explore the challenges that exist in developing practical high-speed LED-based data communication systems.
 
领域三 通过时域数字编码超表面对谐波振幅和相位进行精确和宽带操作,以达到256QAM毫米波无线通信
Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256QAM millimeter-wave wireless communications by time-domain digital coding metasurface
Ming Zheng Chen, etc.
National Science Review, 2021

We propose a theoretical mechanism and new coding strategy to realize extremely accurate manipulations of nonlinear electromagnetic harmonics in ultrawide frequency band based on a time-domain digital coding metasurface (TDCM). Using the proposed mechanism and coding strategy, we design and fabricate a millimeter-wave (mmWave) TDCM, which is composed of reprogrammable meta-atoms embedded with PIN diodes. By controlling the duty ratios and time delays of the digital coding sequences loaded on TDCM, experimental results show that both amplitudes and phases of different harmonics can be engineered at will simultaneously and precisely in broad frequency band from 22 to 33 GHz, even when the coding states are imperfect, which have good agreements with theoretical calculations. Based on the fabricated high-performance TDCM, we further propose and experimentally realize a large-capacity mmWave wireless communication system, where 256 quadrature amplitude modulation (QAM) along with other schemes are demonstrated. The new wireless communication system has a much simpler architecture than the currently used mmWave wireless systems, and hence can significantly reduce the hardware cost. We believe that the proposed method and system architecture can find vast applications in the future mmWave and terahertz-wave (THzWave) wireless communication and radar systems.
 
领域四 基于区块链的无线通信:迈向6G的新范式
Blockchain-enabled wireless communications: a new paradigm towards 6G
Jiaheng Wang, etc.
National Science Review, 2021, 8(9)

With the deployment of fifth-generation (5G) wireless networks worldwide, research on sixth-generation (6G) wireless communications has commenced. It is expected that 6G networks can accommodate numerous heterogeneous devices and infrastructures with enhanced efficiency and security over diverse, e.g. spectrum, computing and storage, resources. However, this goal is impeded by a number of trust-related issues that are often neglected in network designs. Blockchain, as an innovative and revolutionary technology that has arisen in the recent decade, provides a promising solution. Building on its nature of decentralization, transparency, anonymity, immutability, traceability and resiliency, blockchain can establish cooperative trust among separate network entities and facilitate, e.g. efficient resource sharing, trusted data interaction, secure access control, privacy protection, and tracing, certification and supervision functionalities for wireless networks, thus presenting a new paradigm towards 6G. This paper is dedicated to blockchain-enabled wireless communication technologies. We first provide a brief introduction to the fundamentals of blockchain, and then we conduct a comprehensive investigation of the most recent efforts in incorporating blockchain into wireless communications from several aspects. Importantly, we further propose a unified framework of the blockchain radio access network (B-RAN) as a trustworthy and secure paradigm for 6G networking by utilizing blockchain technologies with enhanced efficiency and security. The critical elements of B-RAN, such as consensus mechanisms, smart contract, trustworthy access, mathematical modeling, cross-network sharing, data tracking and auditing and intelligent networking, are elaborated. We also provide the prototype design of B-RAN along with the latest experimental results.


往期精彩推荐

热点文献带您关注AI情感分类技术 ——图书馆前沿文献专题推荐服务(7)

热点论文带您探究6G的无限可能——图书馆前沿文献专题推荐服务(8)

热点文献带您关注AI文本摘要自动生成 ——图书馆前沿文献专题推荐服务(9)

热点论文:5G/6G引领社会新进步——图书馆前沿文献专题推荐服务(10)

热点文献带您关注AI机器翻译 ——图书馆前沿文献专题推荐服务(11)

热点论文与您探讨5G/6G网络技术新进展——图书馆前沿文献专题推荐服务(12)

热点文献带您关注AI计算机视觉 ——图书馆前沿文献专题推荐服务(13)

热点论文与带您领略5G/6G的硬科技与新思路 ——图书馆前沿文献专题推荐服务(14)

热点文献带您关注AI计算机视觉 ——图书馆前沿文献专题推荐服务(15)

热点论文带您领略5G/6G的最新技术动向 ——图书馆前沿文献专题推荐服务(18)

热点文献带您关注图神经网络——图书馆前沿文献专题推荐服务(19)

热点论文与带您领略5G/6G材料技术的最新发展——图书馆前沿文献专题推荐服务(20)

热点文献带您关注模式识别——图书馆前沿文献专题推荐服务(21)

热点论文与带您领略6G网络技术的最新发展趋势 ——图书馆前沿文献专题推荐服务(22)

热点文献带您关注机器学习与量子物理 ——图书馆前沿文献专题推荐服务(23)

热点论文与带您领略5G/6G通信器件材料的最新进展 ——图书馆前沿文献专题推荐服务(24)

热点文献带您关注AI自动驾驶——图书馆前沿文献专题推荐服务(25)

热点论文与带您领略5G/6G网络安全和技术的最新进展——图书馆前沿文献专题推荐服务(26)

热点文献带您关注AI神经网络与忆阻器——图书馆前沿文献专题推荐服务(27)

热点论文与带您领略5G/6G电子器件和太赫兹方面的最新进展——图书馆前沿文献专题推荐服务(28)

热点文献带您关注AI与机器人——图书馆前沿文献专题推荐服务(29)

热点文献带您关注AI深度学习与计算机视觉——图书馆前沿文献专题推荐服务(33)

热点论文与带您领略未来通信的热点技术及最新进展——图书馆前沿文献专题推荐服务(34)

热点文献带您关注AI强化学习——图书馆前沿文献专题推荐服务(35)

热点论文与带您领略5G/6G基础研究的最新进展——图书馆前沿文献专题推荐服务(36)

热点文献带您关注AI与边缘计算——图书馆前沿文献专题推荐服务(37)

热点论文与带您领略5G/6G领域热点研究的最新进展——图书馆前沿文献专题推荐服务(38)
 
热点文献带您关注AI技术的最新进展——图书馆前沿文献专题推荐服务(39)


热点论文与带您领略5G相关领域研究的最新进展——图书馆前沿文献专题推荐服务(40)

热点文献带您关注AI视觉跟踪——图书馆前沿文献专题推荐服务(41)

热点论文带您领略未来通信在海空领域研究的最新进展——图书馆前沿文献专题推荐服务(42)

热点文献带您关注AI与医学研究——图书馆前沿文献专题推荐服务(43)

热点论文带您领略未来通信在材料领域研究的最新进展——图书馆前沿文献专题推荐服务(44)

 
热点文献带您关注AI与医学图像——图书馆前沿文献专题推荐服务(45)